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A one-dimensional steady state pulse moving along a magnetic
field in a cold plasma is considered, The calculations are perforfned
in the nonrelativistic single-particle approximation without taking
into account the collisions, the plasma being ascumed quasi-neutral.
An exact solution of the corresponding equation is presented, The
sinape of the pulse and the distribution of velocity are investigated
The lines of force of the magnetic field and the particles' trajecto-
ries in the pulse are found to be spirals. Determined also is the
dependence of the Mach number on the wave energy. It is shown that
even small oscillations of the magnetic field cause an appreciable
acceleration of the electron component of the pulse at its maximum,

liost of the wave energy is in this case concentrated in the kinetic

energy of electrons.

COVER-TO~-COVER TRANSLATION /

The one-dimensional steady state flows of rarefied plasma
moving in the direction perpendicular to the magnetic field have
been studied in detail by a series of authors [1 =2]. 1In the pre- -
sent work we shall consider steady waves, travelling along the field.

Let us postulate that because of a certain initial plasma

perturbation, there occurs a plane pulse propasating along the field,



The eifcct of initial conditions weakens in time, and the shape of
the pulse is determined by the non-linear effects ~ dispersion and
dissipation. The latter may be linked (aside from Coulomb scattering)
with the averaging of the electromognetic particle acceleration in
the wave by the unperturbed thermal velocities, and also with the
pulsel's instability.

Because of the complexity of the full examination of such a
problem, the investigation is usually broken into two stages : first
the steady-state pulse shape is found without accounting dissipation,
then the discipative effccts are studied for a given shape of the
wave.

It may result that in- the avsence of dissipation the shape of
the pulse does not vary at great distances from the source and depends
for an assigned unperturbed state of the plasma on the pulse rate,
which in its turn is unilaterally linked with the wave energy &.

Let us find the pulse shape as function of € under the follo-
wing assumptions : a) the plasma is sufficiently rarefied for the
Coulomb scattering to be neglected ; b) the thermal velocities of the
unperturbed particles are small in comparison with the wave velocity,
and therefore one may take advantage of a single-particle approxima-
tion ; ¢) the particle velocities in the wave are small in comparison
with the specd of light,

1. BASIC EUATIONS

In the indicated formulation the problem is described by a
system of electron and ion motion equations, continuity equations
and Maxwellian equations for self-consistent fields., Let us introduce
the following designations : V and v, N and n are respectively the
velocities and densities of ions and electrons, E and H are the
electric and the magnetic field, m is the mass of ion, }L is the _
electron to ion mass ratio, e is the abrolute majnitude of the charge
of electron, ¢ is the speed of light. For the sake of simplicity

the ions shall be considered uninegative.
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The problem's edquations are as follows :

av 1
SOV = e+ Zival,

—e{F+ o} = {E+ v}, (1)
ON/Ot + divNV =0, 0n/dt +divav=0, @)
rot H = 4rtec™* (NV —nv), (3)
rot E = — ¢t 0H/ot, . (4) -
divH =0, (5)

divE = 4me (N — n). -(6)

Let us direct an axis x along the undist-urbed field H, ,
which is presumed uniform. /e shall seek the sclution in a form of
a stabilized plane wave travelling in the positive direction of the
axis x with a velocity U. At the same time, all masnitudes depend

only on a single variable E=x—Ut, so that 0/0y=20/0z=0, 0/dx = d/dE,

n = N=N
The equations (2), (4) and (5) are directly integrated:

N = NUJU =V, n=NUJU —uv,), )
E,=UH,Jc, E.=—UH,ec, B (8)
H, = H, = const. (9)

Substituting (7) - (9) into (1), we are assured that the
y - and z-— components of the current c¢(NV — nv) are total differen-

tials. Hence, and from (%) we find that

H 9 /Y : |
He= 0 (obpe), Hy=—2200@,+mw,), (0

) - -
where M =V =N, mU/H, (1)

is the magnetic Mach number.
Let us introduce the dimensionless variables

_. eHy _H _ £
S=aU S h=g 2=

|

W =

SES
]
I

=
.QI<

’
0 .

and let us postulate

W, =86, | —we=49.



Upon substitution of the obtained integrals the equations

are reduced to the system

0% = o — M (Wyw, — Wow,), —pOT- =+ M (Wime— W), (12)

dW . d

T (M)Wt pMr, T = (M), — MW, (13)

Aaw, ) dw, 1 ' ’

= — MWy — My, = — (G —eM) e+ MW, (14)
Bde/ds = Ot — 91 (B2 = Hy/4nMN ). - (15)

Let us seek the solution for which O and ¥ are positive
everywhere (particles are not reflected from the wave)., In the
nonrelativistic case (B*<€1)1 we may deduce from (15) that the
quasineutrality condition ©—9<€@v, is fulfilled (Inasmuch as

the small parameter ‘52 figures in (14) at the senior derivative,

the indicated conclusion requires a subsequent verification, which

will be effected at the end of part 2). Let us assume Ggﬂ‘;;%‘
and let us expand (12) — (15) in powers ‘52. In the zero éﬁproxima-
tion we must assume & = V. Substracting equations (12) from one
another, we exclude €. The problem is thus reduced to the system of

five eqguations

OB wwheve).
aw, . 4 " dughy, M)
== (= M)Wtk paren, L — ) MWL, (16)
aw, 1

ds =(73_

The electric field € is deteriined as
& == (1 — p) 63420%/ds?,

and the correction is

Y = — -6%d?0%ds?. a7
Introducing the complex variables
P=W,+iW, Q=uwy+iv, -y

we may write (16) in a more cornplex form:



0dB/ds = Im PQ",
. dP[ds = (07! -~ M?)iP — uM2Q, (19)
pdQ/ds = — (07" — uM?* iQ + M*P.

At s—>+4oco we shall have O =1, P=Q=0.:

The integration of the system (19) may be reduced to the

gquadrature with the aid of the substitution

P= pexp{SK(s)ds}r =(g+igexp {i{K @) as}, (20

where p, 4y gy K are real functions,

Substituting (20) into (19) and separating the real and the

imaginary parts, we shall obtain :

pdqyds +pKg = — (87 —uM g+ Mp.  ° (25)

Assuming VEM? a4, p=ao, , we shall obtain from (21) and (22):

o= Vi—¢, (26)
and from (22) — (24) and (26): ‘
q = (arcsing —a’g)/pa, (27)
-1 _ 1 arcsing
K Vi—gt ¥ 9 @8
Substituting these results into (25), we shall determine gy (¢):
e :
q(e)==* [283’“’" ® dg— (1 4+ p)aresin® g +
0
— T .
20 (14 (1 =V T—9)]". (@)

The spatial dependence P(s) is determined by quadrature from
(29) ana (22).

2, VAVES OF AVERAGE AND LOW INTSNSITY

Let us examine the waves in which a?<Z1 (1. e. M’<1/P')
" It apvears that at the same time 0< <p<Ll, , S0 that
arc sin ¥ and . Y1 —¢? may be exr Jded in series with a precision

to terms of the second order.

-



Limiting ourselves in the coefficient at 9’4 by the term of the

zero order by « and PW we shall obtain

¢ (@) = £ Qu A (M) V'] — ¢*/6a® AZ (M), . (30) .
where C ' %

A(M) =V (M =T)/M*+ p. @)

ror tie deternmination of the spatial dependence ¥, we
shall select the coordinates!' origin in such a way that

at s =0, Then, we shall have from (22) and (30):
= MAs
= VG oA [oh o, (32)
¢ V / ?h Ve '
Limiting ourselves by the terms of the lowest orders by & and Mo

we find

K=—1jp, R -
W, = 32 Mw/chzlﬂf% s. (33

The precision estimate indicates, that for M < 10, the
error does not exceed 3 percent.

It may be seen from (33) and (17) that the quasineutrality
condition is valid at the fulfillment of the inequality

CupMe 1. DY
The nonrelativism condition for electrons requires that
BMA < . (6
The comparison of (34) and (55) leads to the conclusion that the

requirement pM!<€! is an automatic consequence of nonrelativism

and quasineutrality.



Returning to variables V, v, H, let us write thecir depen-

dence on % :

Ve =0, =3p2MENU, [ chit = (36)

&
V— N T
i 3 A E
o mvo ol i o
v, -+ iv, = fAMU X .;'~._ DM
X exp {— Mpg 4+ iV pMAth == Vi ——}/ ch = . (38)

Hy 4 iH, = — MH, VbAexp{ tW—}-zV—MAthV_ _.} (39)

(37)

|

where §o=mU0/eflo and >(/0=Ho/]/4nN0m epend on M.
The pulse width
2w *]/p,mcUo . M
H, a——ia B . .
e o (MTAAW—ATR \

approaches at great M a constant boundary -—— the mean geometric
among the electron and ion Larmor radii with velocities U, in the
field Hg. In case of weak waves the pulse tends to spread: at M =1
its width equals that to the ion Larmor radius, while at MZ——IL/(1.+ r)
the width §-— oo,

It may be seen from (36) through (39) that the mesnetic
field and the particle trajectory inside the pulse curve into a
spiral with a svacing rqréo. With the wave intensity increase the
spiral's spacing also increases., It is minimum for low wave intensi-
ties. Let us also note, as may be seen from the results obtained,
that the solutiorsin linear approximation, when V and H lie iWma
single plane (Alfvén waves), may only exist during a limited time
intervel. The nonlinear effects lead to the twisting of the lines
of force and of particle trajectories.

It follows from (36) that a certain concentration in the
particle density takes place in the pulse maximum, Formula (38)
shows that in the leading edge of the pulse electrons are characteri-
zed by a phase lag in respect to lons, while in the trailing edge,

to the contrecry, they are in advance of then.



As it nears the pulse maximum the particle accelerates in
a plane perpendicular (transverse) to H,. The maximum transverse

ion velocity

Vo= VB MAuUs

does not reach the magnitude U, at pM3<l . At the same time, the

naximum velocity of electrons

v =V 6 AMUojp (41)

exceeds U, by M#™ /2 times even at comparatively small M (M = 1),
Conseugnetly, the examined type of waves, contrary to transverse
waves [1], mostly accelerates electrons., At M - 1 — joo the
ion and electron acceleration approaches zero thanks to the factor p
The physical cause of acceleration amounts to the fact that
separate ions, flying into the examined field with a velocity U,
freely pass through the wave, while electrons ought to have been
reflected from it. However, by the strength of quasineutrality
the ions pull the electrons through the potential barrier, imparting
them the necessary kinetic energy. As may be seen from (386) and (39),
the electrons move then along the lines of force of the perturbed
field. Inasmuch as this is basically created at the expense of

electron motion, the field is force~free (H|| rot H).

3., THE MACH NUMBER AS A FUNCTION OF WAVE ENERGY

The preceding results give the field H and the velocities
V and v as functions of the liach number M. In case of longitudinal
waves,y when the direction of wave propagation coincides with that of
motion, the liach number has a clear physical sense, and it is linked
with the source to small perturbation velocity ratio. In case of
transverse waves (to which the above-examined pulse is related),
there is no such simple correspondence between the ilach number and
the velocity of the source, Thus, its energy constitutes a better

physical characteristic of the wave.



In case of a steady motion, an unambiguous correspondence
takes place between M and the energy g over 1 cm2 of the wave
front. It may be seen from (37) and (38) that the kinetic energy

is basically concentrated in the electron component, so that

3AMAUBmN,
 ch? (AE/ Y 1)

dt. (42)

The electric energy %E apprears to be low in comvarison
with the magnetic energy &y, and &, ,é A8y = pM2d8, << d8,..

Thus, the fundamental part of the enerzy of the nonrelati-
vistic quasi~-neutral pulse is concentrated in the kinetic energy of
electrons.

.Integrating, we ’f:i.nd

i 6AM8,/V T,

A @
where &, = HomiU,/8meH,} is the magnetic energy of the unperturbed
field in a column §° long, and of 1 cm? cross section.

Hence, taking into account the determination A (31), we
shall find

M1 + ;/ 1+ b (—%)2_/2(1'+ mo ().

Cur formulae are valid at pMIKl and, consequently, at <68, /u'

The lMach number depends little on & : thus, at & > 0 the number

M =1/(1 + fu), the value M = 1 is already reached at & = 128o .
It may be considered within broad limits, tqat M =1, and A(M) :V;;
At the same time the electron energy in the maximum will be of the
order of mU‘2o , where m is the ion mass, and U, — the A fvén wave
velocity. ileanwhile, the perturbed field H will be of the order of
V' wH,<H, Therefore, quite weak field oscillations are capable

of accelerating electrons to high energies.,



For sufficiently great dimensions of the system, powerful
short pulses may form out of initially weak pulses of long extent,
which assure a still more intensive electron acceleration, An
instability may appear on account of the relative motion of elect-
rons and ions [3]. If the instability develops during the time ,
much lesser than the time of the pulse's passing its own length,
the presence of the above~examined waves must lead to a strong
heating of the plasma's electron conpcnent, without heating of the
jonic component.

Such phenomena ofier interest for the theory of the origin
of the Earth's outer radiation belt, within which only fast electrons
could have been detected to-date [L4].

In conclusion, I express my deep gratitude to Academician

M. A. Leontovich for the discussion of the present work.,

xx B N D #x*x%

Institute of liuclear Physics Entered on 25 Jept.l961
Moscow State University
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